#version 330 core out vec4 FragColor; in vec3 FragPos; in vec3 Normal; in vec2 TexCoord; uniform sampler2D texture1; uniform sampler2D overlayTex; uniform sampler2D normalMap; uniform float mixAmount = 0.2; uniform bool hasOverlay = false; uniform bool hasNormalMap = false; uniform vec3 viewPos; uniform vec3 materialColor = vec3(1.0); uniform float ambientStrength = 0.2; uniform vec3 ambientColor = vec3(1.0); uniform float specularStrength = 0.5; uniform float shininess = 32.0; const int MAX_LIGHTS = 10; uniform int lightCount = 0; // up to MAX_LIGHTS // type: 0 dir, 1 point, 2 spot, 3 area (rect) uniform int lightTypeArr[MAX_LIGHTS]; uniform vec3 lightDirArr[MAX_LIGHTS]; uniform vec3 lightPosArr[MAX_LIGHTS]; uniform vec3 lightColorArr[MAX_LIGHTS]; uniform float lightIntensityArr[MAX_LIGHTS]; uniform float lightRangeArr[MAX_LIGHTS]; uniform float lightInnerCosArr[MAX_LIGHTS]; uniform float lightOuterCosArr[MAX_LIGHTS]; uniform vec2 lightAreaSizeArr[MAX_LIGHTS]; uniform float lightAreaFadeArr[MAX_LIGHTS]; // Single directional light controlled by hierarchy (fallback if none set) uniform vec3 lightDir = normalize(vec3(0.3, 1.0, 0.5)); uniform vec3 lightColor = vec3(1.0); uniform float lightIntensity = 1.0; void main() { vec3 norm = normalize(Normal); vec3 viewDir = normalize(viewPos - FragPos); // Texture mixing (corrected) vec4 tex1 = texture(texture1, TexCoord); vec3 texColor = tex1.rgb; if (hasOverlay) { vec3 overlay = texture(overlayTex, TexCoord).rgb; texColor = mix(texColor, overlay, mixAmount); } vec3 baseColor = texColor * materialColor; // Normal map (tangent-space) if (hasNormalMap) { vec3 mapN = texture(normalMap, TexCoord).xyz * 2.0 - 1.0; vec3 dp1 = dFdx(FragPos); vec3 dp2 = dFdy(FragPos); vec2 duv1 = dFdx(TexCoord); vec2 duv2 = dFdy(TexCoord); vec3 tangent = normalize(dp1 * duv2.y - dp2 * duv1.y); vec3 bitangent = normalize(-dp1 * duv2.x + dp2 * duv1.x); mat3 TBN = mat3(tangent, bitangent, normalize(Normal)); norm = normalize(TBN * mapN); } vec3 ambient = ambientStrength * ambientColor * baseColor; vec3 lighting = ambient; int count = min(lightCount, MAX_LIGHTS); for (int i = 0; i < count; ++i) { int ltype = lightTypeArr[i]; float intensity = lightIntensityArr[i]; if (intensity <= 0.0) continue; vec3 lDirN; float attenuation = 1.0; if (ltype == 0) { lDirN = -normalize(lightDirArr[i]); } else if (ltype == 3) { // area light approximate vec3 n = normalize(lightDirArr[i]); vec3 up = abs(n.y) > 0.9 ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(up, n)); vec3 bitangent = cross(n, tangent); vec3 center = lightPosArr[i]; vec3 rel = FragPos - center; float distPlane = dot(rel, n); vec3 onPlane = FragPos - distPlane * n; vec2 halfSize = lightAreaSizeArr[i] * 0.5; vec2 local; local.x = dot(onPlane - center, tangent); local.y = dot(onPlane - center, bitangent); float fade = clamp(lightAreaFadeArr[i], 0.0, 1.0); vec2 absLocal = abs(local); float edgeWeight = 1.0; if (fade < 0.0001) { if (absLocal.x > halfSize.x || absLocal.y > halfSize.y) continue; } else { vec2 inner = halfSize * (1.0 - fade); vec2 delta = max(halfSize - inner, vec2(0.0001)); vec2 outside = max(absLocal - inner, vec2(0.0)); float maxOutside = max(outside.x / delta.x, outside.y / delta.y); edgeWeight = 1.0 - clamp(maxOutside, 0.0, 1.0); if (edgeWeight <= 0.0) continue; edgeWeight = smoothstep(0.0, 1.0, edgeWeight); } vec3 closest = center + tangent * local.x + bitangent * local.y; vec3 lvec = closest - FragPos; float dist = length(lvec); if (dist < 1e-4) continue; lDirN = normalize(lvec); float range = lightRangeArr[i]; if (range > 0.0 && dist > range) continue; if (range > 0.0) { float falloff = clamp(1.0 - (dist / range), 0.0, 1.0); attenuation = falloff * falloff; } // Lambert against area normal for softer look float nl = max(dot(norm, lDirN), 0.0); float facing = max(dot(n, -lDirN), 0.0); attenuation *= facing * edgeWeight; vec3 diffuse = nl * lightColorArr[i] * intensity; vec3 halfwayDir = normalize(lDirN + viewDir); float spec = pow(max(dot(norm, halfwayDir), 0.0), shininess); vec3 specular = specularStrength * spec * lightColorArr[i] * intensity; lighting += attenuation * (diffuse + specular) * baseColor; continue; } else { vec3 ldir = lightPosArr[i] - FragPos; float dist = length(ldir); lDirN = normalize(ldir); float range = lightRangeArr[i]; if (range > 0.0 && dist > range) continue; if (range > 0.0) { float falloff = clamp(1.0 - (dist / range), 0.0, 1.0); attenuation = falloff * falloff; } } float diff = max(dot(norm, lDirN), 0.0); vec3 diffuse = diff * lightColorArr[i] * intensity; vec3 halfwayDir = normalize(lDirN + viewDir); float spec = pow(max(dot(norm, halfwayDir), 0.0), shininess); vec3 specular = specularStrength * spec * lightColorArr[i] * intensity; if (ltype == 2) { float cosTheta = dot(-lDirN, normalize(lightDirArr[i])); float spotAtten = smoothstep(lightOuterCosArr[i], lightInnerCosArr[i], cosTheta); attenuation *= spotAtten; } lighting += attenuation * (diffuse + specular) * baseColor; } float alpha = tex1.a; FragColor = vec4(lighting, alpha); // Preserve alpha if needed }