Files
Modularity/Resources/Shaders/frag.glsl
2025-12-19 07:03:03 -05:00

175 lines
6.1 KiB
GLSL

#version 330 core
out vec4 FragColor;
in vec3 FragPos;
in vec3 Normal;
in vec2 TexCoord;
uniform sampler2D texture1;
uniform sampler2D overlayTex;
uniform sampler2D normalMap;
uniform float mixAmount = 0.2;
uniform bool hasOverlay = false;
uniform bool hasNormalMap = false;
uniform bool unlit = false;
uniform vec3 viewPos;
uniform vec3 materialColor = vec3(1.0);
uniform float ambientStrength = 0.2;
uniform vec3 ambientColor = vec3(1.0);
uniform float specularStrength = 0.5;
uniform float shininess = 32.0;
const int MAX_LIGHTS = 10;
uniform int lightCount = 0; // up to MAX_LIGHTS
// type: 0 dir, 1 point, 2 spot, 3 area (rect)
uniform int lightTypeArr[MAX_LIGHTS];
uniform vec3 lightDirArr[MAX_LIGHTS];
uniform vec3 lightPosArr[MAX_LIGHTS];
uniform vec3 lightColorArr[MAX_LIGHTS];
uniform float lightIntensityArr[MAX_LIGHTS];
uniform float lightRangeArr[MAX_LIGHTS];
uniform float lightInnerCosArr[MAX_LIGHTS];
uniform float lightOuterCosArr[MAX_LIGHTS];
uniform vec2 lightAreaSizeArr[MAX_LIGHTS];
uniform float lightAreaFadeArr[MAX_LIGHTS];
// Single directional light controlled by hierarchy (fallback if none set)
uniform vec3 lightDir = normalize(vec3(0.3, 1.0, 0.5));
uniform vec3 lightColor = vec3(1.0);
uniform float lightIntensity = 1.0;
void main()
{
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(viewPos - FragPos);
// Texture mixing (corrected)
vec4 tex1 = texture(texture1, TexCoord);
vec3 texColor = tex1.rgb;
if (hasOverlay) {
vec3 overlay = texture(overlayTex, TexCoord).rgb;
texColor = mix(texColor, overlay, mixAmount);
}
vec3 baseColor = texColor * materialColor;
if (unlit) {
FragColor = vec4(baseColor, tex1.a);
return;
}
// Normal map (tangent-space)
if (hasNormalMap) {
vec3 mapN = texture(normalMap, TexCoord).xyz * 2.0 - 1.0;
vec3 dp1 = dFdx(FragPos);
vec3 dp2 = dFdy(FragPos);
vec2 duv1 = dFdx(TexCoord);
vec2 duv2 = dFdy(TexCoord);
vec3 tangent = normalize(dp1 * duv2.y - dp2 * duv1.y);
vec3 bitangent = normalize(-dp1 * duv2.x + dp2 * duv1.x);
mat3 TBN = mat3(tangent, bitangent, normalize(Normal));
norm = normalize(TBN * mapN);
}
vec3 ambient = ambientStrength * ambientColor * baseColor;
vec3 lighting = ambient;
int count = min(lightCount, MAX_LIGHTS);
for (int i = 0; i < count; ++i) {
int ltype = lightTypeArr[i];
float intensity = lightIntensityArr[i];
if (intensity <= 0.0) continue;
vec3 lDirN;
float attenuation = 1.0;
if (ltype == 0) {
lDirN = -normalize(lightDirArr[i]);
} else if (ltype == 3) { // area light approximate
vec3 n = normalize(lightDirArr[i]);
vec3 up = abs(n.y) > 0.9 ? vec3(1.0, 0.0, 0.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(up, n));
vec3 bitangent = cross(n, tangent);
vec3 center = lightPosArr[i];
vec3 rel = FragPos - center;
float distPlane = dot(rel, n);
vec3 onPlane = FragPos - distPlane * n;
vec2 halfSize = lightAreaSizeArr[i] * 0.5;
vec2 local;
local.x = dot(onPlane - center, tangent);
local.y = dot(onPlane - center, bitangent);
float fade = clamp(lightAreaFadeArr[i], 0.0, 1.0);
vec2 absLocal = abs(local);
float edgeWeight = 1.0;
if (fade < 0.0001) {
if (absLocal.x > halfSize.x || absLocal.y > halfSize.y) continue;
} else {
vec2 inner = halfSize * (1.0 - fade);
vec2 delta = max(halfSize - inner, vec2(0.0001));
vec2 outside = max(absLocal - inner, vec2(0.0));
float maxOutside = max(outside.x / delta.x, outside.y / delta.y);
edgeWeight = 1.0 - clamp(maxOutside, 0.0, 1.0);
if (edgeWeight <= 0.0) continue;
edgeWeight = smoothstep(0.0, 1.0, edgeWeight);
}
vec3 closest = center + tangent * local.x + bitangent * local.y;
vec3 lvec = closest - FragPos;
float dist = length(lvec);
if (dist < 1e-4) continue;
lDirN = normalize(lvec);
float range = lightRangeArr[i];
if (range > 0.0 && dist > range) continue;
if (range > 0.0) {
float falloff = clamp(1.0 - (dist / range), 0.0, 1.0);
attenuation = falloff * falloff;
}
// Lambert against area normal for softer look
float nl = max(dot(norm, lDirN), 0.0);
float facing = max(dot(n, -lDirN), 0.0);
attenuation *= facing * edgeWeight;
vec3 diffuse = nl * lightColorArr[i] * intensity;
vec3 halfwayDir = normalize(lDirN + viewDir);
float spec = pow(max(dot(norm, halfwayDir), 0.0), shininess);
vec3 specular = specularStrength * spec * lightColorArr[i] * intensity;
lighting += attenuation * (diffuse + specular) * baseColor;
continue;
} else {
vec3 ldir = lightPosArr[i] - FragPos;
float dist = length(ldir);
lDirN = normalize(ldir);
float range = lightRangeArr[i];
if (range > 0.0 && dist > range) continue;
if (range > 0.0) {
float falloff = clamp(1.0 - (dist / range), 0.0, 1.0);
attenuation = falloff * falloff;
}
}
float diff = max(dot(norm, lDirN), 0.0);
vec3 diffuse = diff * lightColorArr[i] * intensity;
vec3 halfwayDir = normalize(lDirN + viewDir);
float spec = pow(max(dot(norm, halfwayDir), 0.0), shininess);
vec3 specular = specularStrength * spec * lightColorArr[i] * intensity;
if (ltype == 2) {
float cosTheta = dot(-lDirN, normalize(lightDirArr[i]));
float spotAtten = smoothstep(lightOuterCosArr[i], lightInnerCosArr[i], cosTheta);
attenuation *= spotAtten;
}
lighting += attenuation * (diffuse + specular) * baseColor;
}
float alpha = tex1.a;
FragColor = vec4(lighting, alpha); // Preserve alpha if needed
}